2011, 5(3): 543-546. doi: 10.3934/amc.2011.5.543

On linear equivalence and Phelps codes. Addendum

1. 

Department of Mathematics, KTH, S-100 44 Stockholm

2. 

Åbylundsgatan 46, S-582 36 Linköping, Sweden

Received  January 2011 Revised  May 2011 Published  August 2011

A new class of perfect 1-error correcting binary codes, so called RRH-codes, are identified, and it is shown that every such code is linearly equivalent to a perfect code obtainable by the Phelps construction.
Citation: Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543
References:
[1]

O. Heden and M. Hessler, On linear equivalence and Phelps codes,, Adv. Math. Commun., 4 (2010), 69. doi: 10.3934/amc.2010.4.69.

[2]

M. Hessler, Perfect codes as isomorphic spaces,, Discr. Math., 306 (2006), 1981. doi: 10.1016/j.disc.2006.03.039.

show all references

References:
[1]

O. Heden and M. Hessler, On linear equivalence and Phelps codes,, Adv. Math. Commun., 4 (2010), 69. doi: 10.3934/amc.2010.4.69.

[2]

M. Hessler, Perfect codes as isomorphic spaces,, Discr. Math., 306 (2006), 1981. doi: 10.1016/j.disc.2006.03.039.

[1]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

[2]

Olof Heden. A survey of perfect codes. Advances in Mathematics of Communications, 2008, 2 (2) : 223-247. doi: 10.3934/amc.2008.2.223

[3]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[4]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[5]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[6]

Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425

[7]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295

[8]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121

[9]

Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163

[10]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[11]

Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007

[12]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[13]

Carlos Munuera, Alonso Sepúlveda, Fernando Torres. Castle curves and codes. Advances in Mathematics of Communications, 2009, 3 (4) : 399-408. doi: 10.3934/amc.2009.3.399

[14]

Heide Gluesing-Luerssen. On isometries for convolutional codes. Advances in Mathematics of Communications, 2009, 3 (2) : 179-203. doi: 10.3934/amc.2009.3.179

[15]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[16]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[17]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[18]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[19]

Adel Alahmadi, Steven Dougherty, André Leroy, Patrick Solé. On the duality and the direction of polycyclic codes. Advances in Mathematics of Communications, 2016, 10 (4) : 921-929. doi: 10.3934/amc.2016049

[20]

M'Hammed Boulagouaz, André Leroy. ($\sigma,\delta$)-codes. Advances in Mathematics of Communications, 2013, 7 (4) : 463-474. doi: 10.3934/amc.2013.7.463

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]