2010, 4(3): 369-379. doi: 10.3934/amc.2010.4.369

On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences

1. 

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190 CH-8057, Zürich, Switzerland

2. 

Department of Computing, Macquarie University, NSW 2109, Australia

3. 

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, A-4040 Linz, Austria

Received  November 2009 Revised  February 2010 Published  August 2010

Recently, multisequences have gained increasing interest for applications in cryptography and quasi-Monte Carlo methods. We study the (generalized) joint linear complexity of a class of nonlinear pseudorandom multisequences introduced by the first two authors as well as the linear complexity of its coordinate sequences. We prove lower bounds which are much stronger than in the case of single sequences since the multidimensional case brings in new and favourable effects.
Citation: Alina Ostafe, Igor E. Shparlinski, Arne Winterhof. On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences. Advances in Mathematics of Communications, 2010, 4 (3) : 369-379. doi: 10.3934/amc.2010.4.369
[1]

Zhixiong Chen, Vladimir Edemskiy, Pinhui Ke, Chenhuang Wu. On $k$-error linear complexity of pseudorandom binary sequences derived from Euler quotients. Advances in Mathematics of Communications, 2018, 12 (4) : 805-816. doi: 10.3934/amc.2018047

[2]

Karthik Elamvazhuthi, Piyush Grover. Optimal transport over nonlinear systems via infinitesimal generators on graphs. Journal of Computational Dynamics, 2018, 0 (0) : 1-32. doi: 10.3934/jcd.2018001

[3]

Jiarong Peng, Xiangyong Zeng, Zhimin Sun. Finite length sequences with large nonlinear complexity. Advances in Mathematics of Communications, 2018, 12 (1) : 215-230. doi: 10.3934/amc.2018015

[4]

Marcela Mejía, J. Urías. An asymptotically perfect pseudorandom generator. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 115-126. doi: 10.3934/dcds.2001.7.115

[5]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[6]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[7]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[8]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[9]

Liqin Hu, Qin Yue, Fengmei Liu. Linear complexity of cyclotomic sequences of order six and BCH codes over GF(3). Advances in Mathematics of Communications, 2014, 8 (3) : 297-312. doi: 10.3934/amc.2014.8.297

[10]

Jianqin Zhou, Wanquan Liu, Xifeng Wang. Structure analysis on the k-error linear complexity for 2n-periodic binary sequences. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1743-1757. doi: 10.3934/jimo.2017016

[11]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

[12]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[13]

Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036

[14]

Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381

[15]

Boris Paneah. Noncommutative dynamical systems with two generators and their applications in analysis. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1411-1422. doi: 10.3934/dcds.2003.9.1411

[16]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[17]

Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299

[18]

Varga K. Kalantarov, Edriss S. Titi. Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1325-1345. doi: 10.3934/dcdsb.2018153

[19]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[20]

Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generators of Feller semigroups with coefficients depending on parameters and optimal estimators. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 511-527. doi: 10.3934/dcdsb.2007.8.511

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (3)

[Back to Top]