2008, 2(4): 451-467. doi: 10.3934/amc.2008.2.451

Geometric constructions of optimal optical orthogonal codes

1. 

Department of Mathematical Sciences, University of New Brunswick Saint John, New Brunswick, E2L 4L5, Canada

2. 

Department of Mathematics, University of Mary Washington, 1301 College Avenue, Trinkle Hall, Fredericksburg, VA 22401, United States

Received  July 2008 Revised  September 2008 Published  November 2008

We provide a variety of constructions of $(n, w, \lambda)$-optical orthogonal codes using special sets of points and Singer groups in finite projective spaces. In several of the constructions, we are able to prove that the resulting codes are optimal with respect to the Johnson bound. The optimal codes exhibited have $\lambda = 1, 2$ and $w-1$ (where $w$ is the weight of each codeword in the code). The remaining constructions are are shown to be asymptotically optimal with respect to the Johnson bound, and in some cases maximal. These codes represent an improvement upon previously known codes by shortening the length. In some cases the constructions give rise to variable weight OOCs.
Citation: T. L. Alderson, K. E. Mellinger. Geometric constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2008, 2 (4) : 451-467. doi: 10.3934/amc.2008.2.451
[1]

Cuiling Fan, Koji Momihara. Unified combinatorial constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2014, 8 (1) : 53-66. doi: 10.3934/amc.2014.8.53

[2]

Huangsheng Yu, Dianhua Wu, Jinhua Wang. New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes. Advances in Mathematics of Communications, 2016, 10 (4) : 811-823. doi: 10.3934/amc.2016042

[3]

Santanu Sarkar, Subhamoy Maitra. Some applications of lattice based root finding techniques. Advances in Mathematics of Communications, 2010, 4 (4) : 519-531. doi: 10.3934/amc.2010.4.519

[4]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[5]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[6]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[7]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[8]

Elena Shchepakina, Olga Korotkova. Canard explosion in chemical and optical systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 495-512. doi: 10.3934/dcdsb.2013.18.495

[9]

Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921

[10]

Partha Sharathi Dutta, Soumitro Banerjee. Period increment cascades in a discontinuous map with square-root singularity. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 961-976. doi: 10.3934/dcdsb.2010.14.961

[11]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[12]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[13]

Lukas F. Lang, Otmar Scherzer. Optical flow on evolving sphere-like surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 305-338. doi: 10.3934/ipi.2017015

[14]

Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems & Imaging, 2007, 1 (4) : 673-690. doi: 10.3934/ipi.2007.1.673

[15]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[16]

Aniello Raffaele Patrone, Otmar Scherzer. On a spatial-temporal decomposition of optical flow. Inverse Problems & Imaging, 2017, 11 (4) : 761-781. doi: 10.3934/ipi.2017036

[17]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[18]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[19]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[20]

Michal Kočvara, Jiří V. Outrata. Inverse truss design as a conic mathematical program with equilibrium constraints. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1329-1350. doi: 10.3934/dcdss.2017071

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]