November  2008, 2(4): 373-391. doi: 10.3934/amc.2008.2.373

Computation of distributions and their moments in the trellis

1. 

Institute of Telecommunications and Applied Information Theory, Ulm University, Albert-Einstein-Allee 43, 89083 Ulm, Germany, Germany

2. 

Computer Science and Communications Research Unit, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

Received  November 2007 Revised  June 2008 Published  November 2008

Consider a function whose set of vector arguments with known distribution is described by a trellis. For a certain class of functions, the distribution of the function values can be calculated in the trellis. The forward/backward recursion known from the BCJR algorithm [2] is generalized to compute the moments of these distributions. In analogy to the symbol probabilities, by introducing a constraint at a certain depth in the trellis we obtain symbol distributions and symbol moments, respectively. These moments are required for an efficient implementation of the discriminated belief propagation algorithm in [8], and can furthermore be utilized to compute conditional entropies in the trellis.
The moment computation algorithm has the same asymptotic complexity as the BCJR algorithm. It is applicable to any commutative semi-ring, thus actually providing a generalization of the Viterbi algorithm [10].
Citation: Axel Heim, Vladimir Sidorenko, Uli Sorger. Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2008, 2 (4) : 373-391. doi: 10.3934/amc.2008.2.373
[1]

Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419

[2]

Thomas Hillen, Kevin J. Painter, Amanda C. Swan, Albert D. Murtha. Moments of von mises and fisher distributions and applications. Mathematical Biosciences & Engineering, 2017, 14 (3) : 673-694. doi: 10.3934/mbe.2017038

[3]

Xiaojun Zhou, Chunhua Yang, Weihua Gui. State transition algorithm. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1039-1056. doi: 10.3934/jimo.2012.8.1039

[4]

Eliana Pepa Risma. A deferred acceptance algorithm with contracts. Journal of Dynamics & Games, 2015, 2 (3&4) : 289-302. doi: 10.3934/jdg.2015005

[5]

François Béguin. Smale diffeomorphisms of surfaces: a classification algorithm. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 261-310. doi: 10.3934/dcds.2004.11.261

[6]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

[7]

Elena Beretta, Markus Grasmair, Monika Muszkieta, Otmar Scherzer. A variational algorithm for the detection of line segments. Inverse Problems & Imaging, 2014, 8 (2) : 389-408. doi: 10.3934/ipi.2014.8.389

[8]

Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027

[9]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Yuying Shi, Ying Gu, Li-Lian Wang, Xue-Cheng Tai. A fast edge detection algorithm using binary labels. Inverse Problems & Imaging, 2015, 9 (2) : 551-578. doi: 10.3934/ipi.2015.9.551

[12]

Simai He, Min Li, Shuzhong Zhang, Zhi-Quan Luo. A nonconvergent example for the iterative water-filling algorithm. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 147-150. doi: 10.3934/naco.2011.1.147

[13]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[14]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[15]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[16]

Zheng-Hai Huang, Jie Sun. A smoothing Newton algorithm for mathematical programs with complementarity constraints. Journal of Industrial & Management Optimization, 2005, 1 (2) : 153-170. doi: 10.3934/jimo.2005.1.153

[17]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[18]

Liying Wang, Weiguo Zhao, Dan Zhang, Linming Zhao. A geometric inversion algorithm for parameters calculation in Francis turbine. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1373-1384. doi: 10.3934/dcdss.2015.8.1373

[19]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[20]

Mingfang Ding, Yanqun Liu, John Anthony Gear. An improved targeted climbing algorithm for linear programs. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 399-405. doi: 10.3934/naco.2011.1.399

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]